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Abstract

How is economic value created by on-demand ride-sharing platforms? We exploit granular

data on dynamic pricing and wait time on Uber and Lyft at type-route-time level, and public

data on taxi and public transit in New York City. We estimate a discrete-choice demand model

that allows substitution among transportation modes. Counterfactual analyses show three main

findings. First, platform users gain 72 cents per dollar spent on these platforms. Second, welfare

gains are disproportionately higher in locations and times that have been underserved by taxis

and public transit. Third, we estimate that 64% of welfare gains come from dynamic pricing

used by these platforms.
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1 Introduction

The rise of the on-demand economy marks one of the leading changes in the digital age. Ride-

sharing platforms, such as Uber and Lyft, differ from traditional taxis in key aspects, such as

real-time smartphone app-based matching, dynamic pricing that balances real-time supply and

demand, and flexible driver work arrangements. This paper empirically studies one fundamental

question: how is economic value created by these ride-sharing platforms? Answering this question

will help managers and policy makers understand the sources of welfare changes from ride-sharing

platforms, which is the first step towards optimizing user experience on the platform and public

policy making.

There are two central challenges in identifying welfare sources. First, different transportation

modes are substitutes. This implies that researchers will overestimate the gains from ride-sharing

platforms if they do not model riders’ substitution towards other transportation options in the

absence of these platforms. Second, researchers typically lack detailed data to adequately control

for heterogeneities across different routes at different times. These data are essential because

demand is route-specific and time-sensitive in this setting.

In this paper, we conduct a demand estimation that directly addresses the first challenge by

allowing substitution among alternative transportation modes at the route-time level. Specifically,

the consumer’s problem is a discrete choice among ride-sharing services, taxis, and public transit,

where the utility of each choice depends on its price, wait time, as well as other observed and

unobserved characteristics. The real-time market shares, however, are simply not available, because

ridership data of public transit, the “outside” option in our model, does not exist at the route-time

level.1 Therefore, existing discrete-choice demand estimation methodologies such as those in Berry

et al. [1995] and Ghose and Han [2014] do not apply in this setting. Instead, we establish our

identification by leveraging the relative shares of the “inside” options.

To address the second challenge, the lack of granular data, we exploit Uber and Lyft application

programming interfaces (API hereafter) query data on dynamic pricing and wait time, at granular

type-route-time levels of New York City (NYC hereafter). We augment these data with the popula-

tion of taxi trip records and Uber/Lyft pick-up information published by NYC Taxi and Limousine

Commission (TLC hereafter). Due to the lack of information on drop-off with TLC Uber and Lyft

trips, we collected field data on 75,704 trip records from 443 Uber and Lyft drivers.

1This is due to the technical feature of the subway system that does not require passengers to swipe their card at
the destination station. Therefore, the system does not record ridership data at the route level.
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The data present interesting model-free evidence on the welfare impacts of ride-sharing plat-

forms: first, Uber and Lyft make ride services conveniently available in many locations in NYC,

while taxis are heavily concentrated in Manhattan; second, dynamic pricing seems to effectively

balance supply and demand, where high prices lead to shorter subsequent wait times and more

subsequent pick-ups.

Our estimation, like other demand estimation studies, is subject to price endogeneity, given

that Uber and Lyft pricing algorithms can potentially take into account factors that affect demand

but are unobserved to the researchers. Wait time is also endogenous because it is the matching

outcome of riders and drivers, which is likely correlated with unobserved demand shocks. We

use instrumental variable strategies to causally identify the model by exploiting a unique design

feature of ride-sharing platforms. Specifically, our instrument for the prices at a focal location is the

average price across the origins of all trips arriving at the focal location. The rationale is that Uber

and Lyft applications do not require information on destinations before committing to a price.2

This suggests that origin prices are not likely affected by destination demand shocks and therefore

this satisfies the exclusion restriction assumption in the IV regressions. On the other hand, this

instrument is correlated with the endogenous price variable, because origin prices affect the number

of cars arriving at the focal location, which directly affects the supply at that location. Following a

similar logic, we instrument on the wait time with the number of drop-offs in all neighboring areas.

The demand parameter estimates are sensible: price-sensitive consumers value time and dislike

waiting, with sensible heterogeneity across locations and time. For example, high wait time sensi-

tivity and low price sensitivity are found on riders in Lower Manhattan during evening rush hours

on weekdays, which may be driven by the preference of financial industry practitioners. Consumers

going to the airport have similar sensitivities. In addition, consumers value service characteristics

including luxury and capacity, which are made conveniently available on ride-sharing platforms

compared to conventional transportation modes.

We estimate consumer welfare impacts of Uber and Lyft in the sense of compensating variation

— the dollar amount that consumers need to be compensated with in the absence of Uber and

Lyft so that they maintain the same level of utility as before. This calculation then requires

estimating the equilibrium wait time of taxis in the absence of Uber and Lyft and then simulating

consumers’ optimal choices accordingly. A simple model with taxi capacity constraint predicts that

2This old version of Uber was updated to upfront pricing after our sample period, and now riders need to input
destinations to get a fixed price. Lyft also went through a similar design change.
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the average taxi wait time increases when ride-sharing platforms are removed from the market, due

to the substitution effect that leads to a greater taxi ridership.

A comparison between consumers’ utility when ride-sharing platforms are present and their

counterfactual utility when these platforms are absent leads to an estimate of the welfare gain of 72

cents for each dollar spent on these platforms. This welfare gain is further attributed to different

welfare channels, namely accessibility, price, luxury, capacity, and comfort, where we find that more

than half of the consumer surplus comes from the better accessibility (short wait time) of Uber

and Lyft. More interestingly, the per-dollar consumer surplus is greater in the outer boroughs

than in Manhattan, and during rush hours than during non-rush hours. These locations and times

have been underserved by taxis and public transit, and the entry of ride-sharing platforms has

greatly benefited consumers in these areas. Furthermore, we find that taxi riders gain 16 cents per

dollar spent, because taxi wait time becomes shorter as a result of some consumers switching to

ride-sharing platforms.

To the extent that the essential difference between traditional taxis and ride-sharing platforms

is the real-time app-based matching technology combined with dynamic pricing, keeping one and

removing the other will help disentangle the relative contributions of the two mechanisms. We

construct a counterfactual where taxis adopt the same app-based matching, and we find a consumer

welfare gain due to the entry of Uber and Lyft as large as 64 percent of the welfare estimate in the

benchmark counterfactual. This finding sheds light on the value added of dynamic pricing, which

appears to make real-time matching of riders and drivers more efficient than having a fixed taxi

fare. Although the information system itself generates extensive values (Bhargava and Choudhary

[2004]), our results suggest that the complementarity (Aral et al. [2012], Bresnahan et al. [2002],

Tambe et al. [2012]) between the technology and the pricing scheme likely has contributed to the

success of ride-sharing platforms.

To our knowledge, this paper is the first consumer welfare analysis of ride-sharing platforms

that accounts for substitution among transportation modes. The most closely related work to ours

is Cohen et al. [2016], who estimate the consumer welfare of UberX at $1.6 per dollar spent. Our

work differs from theirs in two aspects: first, allowing for consumer substitution among alternatives

leads to less biased price sensitivity estimates3; second, we are able to disentangle the distinct

welfare sources, which are necessary in understanding how consumers make purchase decisions and

3More precisely, we allow for competition and substitution at the route level, which we believe is a more realistic
unit (compared to an aggregation of routes) to study consumer purchase decisions in the market of rides.
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consequently how platforms can better design their strategies.

This study adds to the strand of literature on how digital platforms create efficiency gains by

providing convenience and reducing transaction costs of platform sides (Bakos [1997], Bakos [1998],

Brynjolfsson and Smith [2000], Brynjolfsson et al. [2003], Brynjolfsson et al. [2011], Davis [1989],

DeLone and McLean [1992], Parker and Van Alstyne [2005]). Particularly, this paper provides direct

empirical evidence on how centralized information systems improve the matching of the platform’s

two sides, compared to the decentralized taxi system (Einav et al. [2016], Fradkin [2017]). To the

extent that matching frictions are equilibrium outcomes of the taxi market (Lagos [2000], Lagos

[2003]), Cramer and Krueger [2016] show the efficiency gain of ride-sharing platforms evidenced by

higher utilization rate than taxis. Buchholz [2015] and Frechette et al. [2016] simulate substantial

welfare gains from the use of matching technologies that resemble ride-sharing platforms, which

is also in accordance with our welfare estimates. Given that price adjustments on the platforms

require minimal costs (Brynjolfsson and Smith [2000]), this paper further supports dynamic pricing

as a feasible and efficient way to balance supply and demand, as argued in Hall et al. [2015] and

Castillo et al. [2017].

Using a discrete choice framework, this paper projects the product or service into the charac-

teristic space and identifies the distinct welfare channels, which is in the basic spirit of demand

estimation studies such as Goolsbee and Petrin [2004], Nevo [2000, 2001], Petrin [2002]. The welfare

gains from richer product assortments on the platforms are also consistent with the “love-of-variety”

story as in Brynjolfsson et al. [2003] and Quan and Williams [2016]. As a contribution to the lit-

erature, we are among the first to extend the discrete choice demand estimation into the real-time

setting with an application of the on-demand economy.

Our research also joins a growing literature that studies the sharing economy, such as work

flexibility (Chen et al. [2017], Hall and Krueger [2016], Hall et al. [2017]), drunk driving (Greenwood

and Wattal [2017]), entrepreneurial activity (Burtch et al. [2016]), local consumption patterns

(Zhang and Li [2017]), sexual harassment (Park et al. [2017]), car ownership (Gong et al. [2017]),

traffic congestion (Li et al. [2016]), as well as demand and welfare studies of Airbnb (Farronato and

Fradkin [2017], Zervas et al. [2014], Zhang et al. [2017]).

The remainder of the paper is structured as follows. Section 2 gives an overview of the industry

and the market of rides. Section 3 provides a detailed description of the data. Section 4 describes

the demand estimation and identification procedure. Section 5 discusses the estimation results.

Section 6 presents a model of taxi market equilibrium. Section 7 illustrates the welfare calculation
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by studying two counterfactuals. Finally, Section 8 concludes this paper.

2 Market for Rides in NYC

Household car ownership in NYC is among the lowest across cities in the U.S., with more than

half of NYC households vehicle-free.4 Residents of NYC, as well as visitors, rely heavily on public

transportation to get around the city. The NYC subway system is one of the largest and busiest

subway networks in the world, with an annual ridership of more than 638 million rides in 2016.5

Another big component of the NYC public transportation system is the bus network, whose rid-

ership exceeded 125 million in 2016.6 So, public transportation plays an important role in New

Yorkers’ daily life.

An alternative way of traveling is by taxi cabs. NYC has one of the largest and most exten-

sively operated taxi systems in the country. Yellow medallion taxis, serving the city for over a

century, have become one of the cultural staples of NYC. TLC has strict control over the number

of medallions in the market, and there were 13,587 yellow medallion licenses in 2015. Taxi fare

changes are infrequent.7 While yellow medallion taxis can pick up street hails in all five boroughs

of NYC, pick-ups are heavily concentrated in Manhattan (Figure 3). As an effort to increase taxi

coverage in neighborhoods outside Manhattan, in August 2013, TLC introduced street hail livery

cabs, commonly known as green boro taxis, which have limited pick-up areas. 8 By the end of

2015, 7,676 green boro taxi licenses were active in the market.

With the wide adoption of smartphones, application-based ride-sharing platforms were designed

by companies to enable ride requests via apps. Uber entered the NYC market in May 2011 and

has become the largest player in the market. Lyft, Uber’s largest competitor, entered the NYC

market in July 2014. Besides Uber and Lyft, there are also a few other ride-sharing platforms that

are relatively small in market shares, such as Via, Gett, and Juno. These platforms share real-time

supply conditions with the riders and practice dynamic pricing to allow for real-time adjustment

of demand and supply. For example, Uber’s interface (Figure 1) shows the rider the estimated

wait time at the pick-up location and requires the rider to accept a certain dynamic price multiple

4http://ns.umich.edu/new/releases/21923-hitchin-a-ride-fewer-americans-have-their-own-vehicle
5http://web.mta.info/nyct/facts/ridership/ridership_bus_annual.htm
6http://web.mta.info/nyct/facts/ridership/ridership_busMTA_annual.htm
7Taxi fare has been increased only once in the past decade, in September 2012.
8Green boro taxis share the same price structure as yellow medallion taxis; they can accept street hails anywhere

in NYC except south of West 110th Street and East 96th Street in Manhattan and the airports in Queens (although
they can take pre-arranged trips in these airports) and they may drop passengers off anywhere. For details, see
http://www.nyc.gov/html/tlc/html/passenger/shl_passenger.shtml
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Figure 1: Uber Application Interface (source: Cohen et al. [2016])

before requesting a trip. Drivers join the platforms as independent contractors, drive their own

cars, and have flexibility in work location, schedule, and intensity. The prices riders pay are set

by the platforms and often changed frequently in response to changing market conditions. The

revenues drivers get are usually the prices riders pay, net of a fixed rate of commission charged

by the platforms. In addition, these platforms provide differentiated service types. For example,

UberX is the regular ride service with non-luxury sedans, while UberBlack is the luxury black

car service. Payments are handled by the application, which facilitates transactions. Similar to

other platforms in the digital economy, ride-sharing platforms allow riders and drivers to rate the

transactions. Over the past few years, ride-sharing platforms have experienced rapid growth in

both driver and rider adoptions.

The entry of tech-aided ride-sharing platforms dramatically changed the landscape of the market

for rides. A direct impact is on the taxi system, where ridership has dwindled constantly in the past

few years. The number of yellow medallion trips daily fell from 463,701 in November 2010 to 336,737

six years later, and the total daily revenue fell from $5.17 million to $4.98 million.9 Once over a

million dollars, the average auction price of a medallion license has dropped significantly as well.10

The rise of ride-sharing platforms may also have contributed to the fall in subway ridership.11

9https://www.nytimes.com/2017/01/15/nyregion/yellow-cab-long-a-fixture-of-city-life-is-for-many\

discretionary{-}{}{}a-thing-of-the-past.html?hp&action=click&pgtype=Homepage&clickSource=

story-heading&module=second-column-region&region=top-news&WT.nav=top-news&_r=0
10http://www.nyc.gov/html/tlc/html/archive/archive_med_transfer_2016.shtml
11https://www.nytimes.com/2017/02/23/nyregion/new-york-city-subway-ridership.html
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3 Data and Model-free Evidence

3.1 Data Summary

Our data set focuses on NYC, which consists of five boroughs, namely the Bronx, Brooklyn, Man-

hattan, Staten Island, and Queens. The city is further divided by TLC into 263 taxi zones, 69 of

them being in Manhattan. These zones vary in size, and normally Manhattan zones are smaller

than zones in the outer boroughs.12 The typical Manhattan taxi zone is six by six street blocks

wide. Throughout this paper, we treat these taxi zones as our basic geographical units of analysis.

First, we collected information on dynamic pricing13, wait time, trip duration estimates, and trip

distance estimates using the Uber and Lyft API. The dynamic pricing and wait time were queried

at approximately 1-minute intervals for all 263 pick-up zones. For each of the 263 by 263 routes,

we estimated trip distance, trip duration, and trip cost approximately once every 4 hours.14 All of

the above-mentioned data were collected for all service types available on both platforms, namely

UberX, UberXL, UberBlack, UberSUV, UberPOOL, Lyft, LyftLine, and LyftPlus 15. Summary

statistics are shown in Table 5. One striking feature of the data is how quickly prices and wait

time change across space and time (Figure 2). In addition, we queried the same set of information

on UberTaxi, which was a function on the Uber platform that riders could use to request taxi cab

rides. Unlike other service types on Uber, the fare was still metered like a regular taxi ride and

Uber charged a small booking fee.16

Second, we obtained the population of taxi trip records from NYC TLC. These records, summa-

rized in Table 6, contain detailed trip information, such as pick-up and drop-off date and time, the

GPS coordinates of the pick-up and drop-off locations, number of passengers, trip fares, etc. TLC

also publishes FHV trip records, where we identified Uber and Lyft trips by the dispatching base

numbers.17 Far from the level of detail of taxi trip records, Uber and Lyft trip data only contain

12Refer to the following link for a shape file of taxi zones provided by TLC: http://www.nyc.gov/html/tlc/html/
about/trip_record_data.shtml.

13Dynamic pricing is called “surge pricing” on Uber and “prime-time” pricing on Lyft. For simplicity, we use
“surge” to refer to the practice of dynamic pricing on both platforms throughout the text. For example, “surge
multiple” refers to the multiples of the base price on both platforms.

14Refer to the data appendix A.1 for more details.
15UberX and Lyft are the regular and mostly used service types on each platform, respectively. UberXL and

LyftPlus are service types with cars of larger capacity, which usually seat up to 6 passengers. UberBlack and
UberSUV are the luxury options on Uber platform. UberPool and LyftLine are the carpool options on Uber and
Lyft, respectively.

16UberTaxi was first introduced in NYC in September 2012 and quickly pulled back in October 2012. It returned
to NYC in April 2013 and operated till September 2016. Uber does not handle the payment with UberTaxi. For each
requested trip, Uber charges a $2 commission fee.

17Refer to http://www.nyc.gov/html/tlc/downloads/pdf/find_a_ride.pdf. See the data appendix A.2 for how
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Figure 2: Surge Multiple and Wait Time Change Rapidly across Space and Time
(UberX, Monday, June 6, 2016)
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Note: This graph plots how UberX minute-level surge multiple and wait time, averaged over all zones of a given
NYC borough, vary across time of the day, on Monday, June 6th 2016. Surge multiples are in varying shades as

illustrated by the legend, and wait time are measured by the bar length.

pick-up date, time, and locations in the form of taxi zones. Restricted by this, we then mapped

the GPS coordinates of taxi trips into their corresponding taxi zones so that taxi and ride-sharing

trips are in the same geographical unit.

Uber and Lyft trip records provided by TLC lack information on drop-off locations, drop-off

time, and service types. This data limitation hinders analysis at the type-route-time level. To

address this problem, we conducted field data collection to acquire approximately 75,704 historical

trip records from 443 Uber and Lyft drivers in NYC. We discuss the sampling methods and ran-

domness of the data in the appendix (A.3). This data set contains detailed information about the

trips, such as pick-up location and time, drop-off location and time, price and surge multiple, wait

time, service type, trip distance, and trip duration (summary provided in Table 7). We further

include the total travel time via subway for all the 263× 263 routes, which we queried from Google

Maps API.

the base numbers are identified.
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Each of these data sources cover different time periods. We used the overlapping period between

June 1, 2016 and August 31, 2016 as our analysis sample.

3.2 Model-free Evidence

3.2.1 Uber and Lyft Location-time Coverage

The data present some interesting model-free evidence on consumer welfare gains of the ride-

sharing platforms. First of all, the sheer volume of realized transactions on Uber and Lyft indicates

consumers’ valuation, by revealed preference. As Figure 3 demonstrates, while taxi pick-ups are

concentrated in Manhattan Core, shares of Uber and Lyft pick-ups are significantly higher in the

outer boroughs. To the extent that it is much more difficult to hail a cab in the outer boroughs

than in Manhattan, Figure 3 suggests a disproportionate welfare gain due to the availability of

ride-sharing services in neighborhoods that are traditionally underserved by taxis.

Figure 3: Ride-sharing Platforms Cater to the Outer Boroughs More than Manhattan

Figure 4 shows how taxi and ride-sharing pick-ups covary across hours of the day. Overall,

taxi and ride-sharing trips follow the same trend, except around 4 a.m. and 4 p.m., when ride-

sharing platforms gain larger shares. This is likely due to the early morning and afternoon taxi shift

9



Figure 4: More Ride-sharing Trips during Taxi Shift-change Hours

(a) NYC taxi, Uber, and Lyft trips by time of an
average weekday

(b) Shares of Uber and Lyft trips by time of an
average weekday

Table 1: Pick-up Coverage of Taxi, Uber, and Lyft

Level Taxi Uber Lyft Uber+Lyft Maximum

pickupzone 98% 99% 99% 99% 100%
pickupzone-day 89% 98% 97% 98% 100%
pickupzone-day-hour 64% 89% 76% 90% 100%
pickupzone-day-hour-15min 50% 74% 52% 78% 100%

Note: Each of the numbers shown in the table represents the percentage of all unique location-
time cells with at least one pick-up requested (June 2016 only). For example, the total number of
cells at the finest level (“pickupzone-day-hour-15min”) is 757,440 (263 x 30 days x 24 hours per
day x four 15-minute intervals per hour). The number 50% for taxi, for example, means that taxi
trips are observed in 50% of 757,400 cells.

changes18, which create an out flux of taxi cabs, mostly from Manhattan to the outer boroughs 19.

These patterns are indicative of consumers’ substitution toward ride-sharing services during the

hours when taxis are less available.

Table 1 further compares the pick-up coverage of taxis, Uber, and Lyft across both space and

time. The numbers in the table represent the share of all space-time combinations, at each space-

time level, where at least one pick-up took place. The numbers demonstrate that both Uber and

Lyft exceed taxis in coverage, on every level. In addition, these differences in coverage are larger

on finer space-time levels.
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Table 2: Dynamic Pricing is Difficult to Predict

X XL SUV Black Pool Lyft Line Plus

Fixed Effects Surge Multiple

pickupzone 0.08 0.08 0.01 0.02 0.07 0.05 0.05 0.05
pickupzone-hour 0.16 0.15 0.03 0.03 0.13 0.11 0.11 0.11
pickupzone-hour-weekend 0.21 0.20 0.05 0.05 0.18 0.13 0.13 0.13
pickupzone-hour-weekday 0.24 0.23 0.07 0.07 0.21 0.17 0.17 0.17
pickupzone-hour-weekday-15min 0.27 0.26 0.10 0.10 0.24 0.19 0.19 0.19
Fixed Effects Surge Dummy

pickupzone 0.12 0.12 0.07 0.07 0.11 0.07 0.07 0.07
pickupzone-hour 0.17 0.16 0.07 0.07 0.16 0.11 0.11 0.11
pickupzone-hour-weekend 0.20 0.19 0.08 0.08 0.20 0.14 0.14 0.14
pickupzone-hour-weekday 0.22 0.22 0.09 0.09 0.22 0.17 0.17 0.17
pickupzone-hour-weekday-15min 0.24 0.24 0.10 0.10 0.24 0.18 0.18 0.18

Note: Each of the numbers shown in the table represents the R-squared of the regression of the surge multiple
(or surge dummy in the lower panel) on a set of location-time fixed effects. “Weekend” is a dummy for weekend;
“Weekday” is a set of dummies for 7 days of the week; “15min” is a set of dummies for the four 15-minute peri-
ods of an hour, specifically 0 - 14, 15 - 29, 30 - 44, 45 - 59. Each level of the fixed effects is a cross-product of the
respective dummies.

3.2.2 Dynamic Pricing

Efficiency can be gained when dynamic pricing effectively balances supply and demand (Hall et al.

[2015]) 20. One should expect a more important role of dynamic pricing when the market conditions

are stochastic. When demand is high relative to supply, a higher price than normal commanded

by a pricing algorithm likely reduces demand and incentivizes supply. As a result, more trips are

requested in equilibrium and, consequently, the welfare increases. Consistencies with this intuition

are found in the data, as detailed next.

First, dynamic pricing is highly volatile and difficult to predict, reflecting the randomness of

the underlying market conditions that require frequent price adjustments. In the upper panel of

Table 2, we report the R-squared of the regression of the surge price, at pickupzone-minute level,

on the corresponding set of location-time fixed effects, for a given service type. These numbers

measure how well one can predict the dynamic prices using the location-time fixed effects. Across

service types, the R-squared increases as more layers of fixed effects are controlled for. However, the

increase in the R-squared is rather small; even at a level as fine as pickupzone-hour-weekday-15min,

18The majority of yellow medallion cabs are operated two shifts per day.
19Most of taxi leasing garages are located outside of Manhattan.
20Guda and Subramanian [2017] propose an alternative theory on the strategic role of dynamic pricing.
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only a maximum of 27% of variations in surge multiples can be explained. The situation barely

changes, as shown in the lower panel, when the same set of regressions are conducted on the surge

dummy (1 when surge multiple is above 1.0, 0 otherwise).

We then examined how dynamic pricing predicts subsequent wait time and pick-ups. In Table

3, each cell represents a regression of the first difference of wait time on the surge multiple, for

a given service type and at a given minute of the next 5-minute period. The numbers shown in

the table are the associated regression coefficients (in the unit of seconds of time), all of which are

negative and significantly estimated at the 1% level. These numbers indicate that a high surge

multiple predicts a decrease in subsequent wait time, and this decrease is present for at least 5

minutes following the surge. In Table 4, we regress subsequent pick-ups on dynamic prices, where

the positive coefficients estimates of own-price-own-trip regressions (numbers in italics) suggest that

a high surge price leads to more trips requested. For example, an increase of Uber surge multiple

by 1 (i.e., doubling the price) predicts 0.88 more trips requested in the next 5 minutes, and 1.80

and 2.79 in the next 10 and 15 minutes, respectively. The numbers with Lyft (0.00, 0.06, and 0.13)

are substantially smaller, which may reflect the relative scales of Uber and Lyft, the heterogeneous

speeds at which the market adjusts, or both.

Finally, we shed light on the competition and substitution between taxi, Uber, and Lyft, by

showing that surge multiples positively correlate with subsequent pick-ups of alternative trans-

portation modes. In Table 4, for example, doubling UberX price predicts 2.5 more taxi trips and

0.21 more Lyft trips requested in the following 5 minutes. These effects are estimated positive and

strong, even after controlling for fixed effects as granular as pickupzone-hour-weekday. However,

these patterns can be driven by demand shocks that are correlated but not controlled, instead of

substitution. To causally identify these effects, we conduct a formal demand estimation in Section

4.

4 Demand Estimation

4.1 Demand for Rides

Market conditions constantly change in the market of rides: factors such as prices, wait time, and

conditions of competing alternatives vary at a high frequency across time within a location. Con-

sumers make transit decisions by evaluating these relevant time-varying characteristics. Therefore,

we set up the demand model at a granular route-time level, which we believe is a reasonable unit

12



Table 3: Dynamic Pricing Predicts Shorter Subsequent Wait Time

WTt+1 − WTt WTt+2 − WTt+1 WTt+3 − WTt+2 WTt+4 − WTt+3 WTt+5 − WTt+4

UberX Surge -30.15*** -47.28*** -55.31*** -54.95*** -48.68***
(0.43) (0.51) (0.55) (0.58) (0.60)

UberXL Surge -62.26*** -100.36*** -119.17*** -118.51*** -118.51***
(0.74) (0.87) (0.94) (0.99) (0.99)

UberSUV Surge -16.59*** -30.28*** -41.80*** -51.47*** -51.47***
(0.73) (0.92) (1.02) (1.09) (1.09)

UberBlack Surge -12.74*** -22.95*** -30.85*** -37.81*** -37.81***
(0.68) (0.85) (0.94) (1.00) (1.00)

UberPool Surge -39.85*** -63.95*** -76.23*** -78.91*** -78.91***
(0.68) (0.79) (0.86) (0.90) (0.90)

Lyft Surge -16.90*** -26.88*** -33.99*** -39.32*** -39.32***
(0.08) (0.09) (0.10) (0.11) (0.11)

LyftLine Surge -14.35*** -23.04*** -29.28*** -34.03*** -34.03***
(0.08) (0.09) (0.10) (0.10) (0.10)

LyftPlus Surge -12.14*** -19.97*** -25.97*** -30.87*** -30.87***
(0.10) (0.12) (0.13) (0.14) (0.14)

Note: Each cell represents a regression of the first difference of wait time on the surge multiple, for a given service type and at
a given minute of the next 5-minute period. For example, the first cell is the regression of the change in UberX wait time from
t to t+ 1 on UberX surge multiple at time t, where the number -30.15 indicates that a 100% increase in UberX price predicts a
decrease in UberX wait time in the next minute by 30.15 seconds. The fixed effects included in each regression are at the level
of pickupzone-hour-weekday, where “weekday” is a set of dummies for 7 days of the week. Standard errors are in parentheses;
*** stands for statistical significance at 1% level.

of analysis in this market.

Consider a scenario in which an agent i, who needs to move from location j to location k at time

t, demands a ride. She faces a set of heterogeneous transportation modes: public transportation,

taxi, and ride-sharing platforms. This agent evaluates these options by comparing various attributes

that affect her utility, such as price, travel time, wait time, other observed and unobserved service-

specific characteristics, as well as her own idiosyncratic taste. She then chooses the transportation

mode that gives her the highest utility. Thus, our analysis follows the discrete choice demand

framework, and the utility function is specified as

Usijkt = −αjktPsjkt + βjkt(ToTojkt −WTsjt − TTsjkt) +X ′sjktΘ + ξsjkt + φjkt + εsijkt (1)

where Psjkt is the price of the trip; s denotes one of the “inside options” considered in this paper:

taxi and all the service types on Uber and Lyft. We treat public transportation as the outside

option, which requires a total travel time of ToTojkt.
21 Let WTsjt denote the wait time of s at

21As a key difference with the existing literature on discrete choice demand estimation, we do not allow for the
no-purchasing option. We study how consumers choose from available transportation options, assuming that the trip
demand is fixed.
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Table 4: Dynamic Pricing Predicts More Subsequent Pick-ups

Taxi Pick-ups Uber Pick-ups Lyft Pick-ups

Panel A: Next 5 Minutes
UberX Surge Multiple 2.50*** 0.88*** 0.21***

(0.01) (0.01) (0.00)
Lyft Surge Multiple 0.77*** 0.46*** 0.00***

(0.01) (0.00) (0.00)

Panel B: Next 10 Minutes
UberX Surge Multiple 4.78*** 1.80*** 0.37***

(0.02) (0.01) (0.00)
Lyft Surge Multiple 1.48*** 0.93*** 0.06***

(0.01) (0.01) (0.00)

Panel C: Next 15 Minutes
UberX Surge Multiple 6.83*** 2.79*** 0.55***

(0.04) (0.02) (0.01)
Lyft Surge Multiple 2.20*** 1.41*** 0.13***

(0.02) (0.01) (0.00)

Note: Each cell represents a separate regression of the respective transportation pick-ups on the
corresponding surge multiple. Note that Uber pick-ups are aggegate trip counts over all Uber
service types, and the same apllies for Lyft, because TLC FHV data do not indicate trip service
types. For prices, we use UberX and Lyft surge multiples, given that these two service types
are the mostly used options on Uber and Lyft, respectively. Standard errors are in parentheses
(*** stands for statistical significance at 1% level).

location j and time t, while TTsjkt is the travel time of s. Therefore, ToTojkt −WTsjt − TTsjkt
represents the amount of time s saves compared to the outside option, and βjkt is the marginal

utility of time saved. Let Xsjkt represent a vector of observed service-specific characteristics that

affect utility, Θ being the associated vector of parameters. In addition, ξsjkt is the unobserved (to

the researcher) utility component; φjkt is the utility difference between all other service types and

public transportation — it measures rider utility of not having to walk to the subway station, not

finding a seat, or both; and εsijkt is the consumer idiosyncratic error term. The travel time TTsjkt

is assumed to be the same for all inside services types. As a result, the subscript s in TTsjkt is

removed from here on.

The market shares of service types, however, are not available at the route level in real time.

As previously mentioned, this is because the ridership data of public transit do not exist at a level

as granular as our route-times, which makes it impossible to compute the market shares of each

of the service types. This is a great empirical challenge that we need to deal with, as existing

discrete-choice demand estimation methodologies such as those of Berry [1994] and Berry et al.
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[1995] do not apply in our setting.

To feasibly estimate the demand, we take advantage of the odds ratios in the logit framework to

establish our identification, in a similar manner as Chevalier and Goolsbee [2009]22. This essentially

avoids the aforementioned problems caused by unavailable market shares, while at the same time

flexibly allows for taste heterogeneity across markets. Specifically, we assume a Type 1 extreme

value distribution of the error term, which amounts to a standard logit at each jkt cell. Normalizing

the mean utility of the outside option at jkt to be 0 gives the market share of s in the market jkt:

MarketSharesjkt =
exp(δsjkt)

1 +
∑S

n=1 exp(δsjkt)
(2)

where δsjkt = −αjktPsjkt + βjkt(ToTojkt − WTsjt − TTjkt) + X ′sjktΘ + φjkt + ξsjkt is the mean

conditional utility of service s at jkt. To ease illustration, let taxi cabs be denoted as c. Then

taking logs of the predicted odds ratios of taxis’ share and the share of any one ride-sharing service

type yields

log(
Dcjkt

Dsjkt
) = αjkt(Psjkt − Pcjkt) + βjkt(WTsjt −WTcjt) (3)

+ (Xcjkt −Xsjkt)
′Θ + ξcjkt − ξsjkt

where Dcjkt and Dsjkt are trip counts of taxi and service type s, respectively. Equation 3 indicates

that the number of taxi trips at the route-time level should be positively correlated with the location-

time prices and wait time of platform service s, and negatively correlated with the location-time own

prices and own wait time, as well as differentials in other observed and unobserved characteristics.

We chose to use the simple logit framework primarily due to the benefit of analytical solutions

that allow for identification in the absence of data on market shares. However, it is important

to recognize the IIA (Independence of Irrelevant Alternatives) problem associated with simple

logit, which puts too much weight on the idiosyncratic error in driving the substitution patterns,

compared to the random coefficients models. We use as many fixed effects as the model can afford,

at various levels across time and space, in an attempt to alleviate the consumer taste heterogeneity

problem. Although relatively restrictive within jkt, the model allows for heterogeneous marginal

utility of price and wait time across jkt’s:

22As will be shown later, we face a new challenge of correlated errors, which is absent in Chevalier and Goolsbee
[2009], who use the difference between an inside option and the outside option to establish identification.
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αjkt = Y ′jktΘA + εα (4)

βjkt = Y ′jktΘB + εβ (5)

where Yjkt is a row vector of dummy variables that contain various combinations of pick-up areas

and time blocks, and ΘA and ΘB are the vectors of the corresponding coefficients for price and

time, respectively. Specifically, the areas include Lower Manhattan (dummy), Midtown Manhattan

(dummy), Upper East and West Manhattan (dummy), and Non-Manhattan Core (dummy). Time

blocks include morning rush (weekdays 7 a.m. - 9 a.m.), evening rush (weekdays 4 p.m. - 7 p.m.),

weekday day time (weekdays 10 a.m. - 3 p.m.), weekday night (weekdays 8 p.m. - 11 p.m.),

weekday late night (weekdays midnight - 6 a.m.), weekend day time (weekends 5 a.m. - 5 p.m.),

weekend night (Friday 8 p.m. - 11 p.m. and weekends 6 p.m. - 11 p.m.), and weekend late night

(weekends midnight - 4 a.m.).

Several data limitations still exist with estimation of Equation 3. First, we do not observe the

wait time of taxi cabs WTcjt. However, consumers do not likely know taxi wait time at a given

location at a given time either. They instead act according to their expectations of WTcjt. In

addition, this expectation is probably rough in location and time. Therefore, the many location

and time fixed effects included in the regression should be able to absorb WTcjt (to be specific,

−βjktWTcjt in the regression).

Another limitation is that Uber and Lyft trip records published by TLC lack drop-off informa-

tion and trip service types, which prevents us from getting the trip counts of various Uber and Lyft

service types at the jkt route, or Dsjkt. To address this issue, we use the surveyed 75,704 Uber and

Lyft historical trips in the same time period to construct proxies. This sample consists of a random

subsample and a convenience subsample. In the data appendix A.3, we show that the convenience

subsample resembles the random subsample closely, so we can rely on the randomness of the full

sample to infer Dsjkt. To infer Dsjkt, we first estimate a probit function to predict the probability

of a certain trip that takes place in a certain jkt cell, using the full sample. We then infer Dsjkt by

distributing the total Uber/Lyft pick-ups at a jt to various service types and destinations, based

on these empirical probabilities.23

We define jkt at the level of origin-destination-15minute. Having both the origin and desti-

nation at the taxi zone level, however, leads to long-right-tailed distributions of Dcjkt and Dsjkt.

23A detailed discussion is presented in the data appendix A.4.
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This can be especially problematic, because extremely small predicted values of Dsjkt can lead to

extremely large odds ratios in the dependent variable, which can drive the estimates by unreason-

ably large variation. In other words, too much weight can be put on these extreme values due to

the exponential nature. As an effort to alleviate the potential bias due to measurement error in

Dsjkt, we use a larger geographical area defined by PUMA (Public Use Microdata Areas) as the

destination unit.24 Further, we choose to drop observations with Dsjkt less than 0.1, for the same

concern regarding the potential measurement error in the odds ratio. Our sample then contains

only sjkt’s where Dcjkt > 0 and Dsjkt ≥ 0.1. Within each jkt, there are varying number of obser-

vations depending on the aforementioned filters (Dcjkt > 0 and Dsjkt ≥ 0.1). For example, if only

UberX and Lyft trips in a particular jkt are estimated at least 0.1 while taxi trips are positive, this

jkt then contains two observations: one with odds ratio between taxi and UberX, and the other

with odds ratio between taxi and Lyft.

4.2 Estimation and Identification

Our estimation, like other demand estimation studies, is subject to price and wait time endogeneity,

given that Uber and Lyft pricing algorithms can potentially take into account many factors that

affect demand, both observed and unobserved to the researchers. Then a simple OLS estimation

of Equation 3 would lead to biased estimates of variables of interest.

To deal with this endogeneity, we implement an IV strategy by instrumenting for Psjkt − Pcjkt
using the average surge price across the origins of all trips arriving at jt in the previous time period.

On one hand, origin surge price affects the trips demanded in the origin, which then affects the

number of drop-offs and available drivers at the focal location, and this in turn affects the prices

adjusted at the focal location by the pricing algorithms, thus creating a correlation between the

origin surge price and focal location price. On the other hand, the exclusion restriction holds in

our setting due to the unique design feature of Uber and Lyft — platforms commit to a surge

multiple before riders put in their destinations, as shown in Figure 1. That is, the platforms

have no knowledge of where riders plan to go before committing to a price, which helps break the

linkage between origin price and destination demand shock and justify the exclusion restriction.25

24There are 55 PUMA’s in NYC. For a visual representation, see https://data.cityofnewyork.us/

Housing-Development/Public-Use-Microdata-Areas-PUMA-/cwiz-gcty/data
25This might not be the case anymore given that Uber and Lyft now require riders to input their destinations before

showing a fixed price for the trip. In this case, origin price can be affected by the destination demand shock, if the
ride-sharing platforms practice dynamic programming and discriminate riders based on destinations. For example,
the demand shock at the destination may lead the platform to willingly offer a low price at the origin, just to have
the driver relocated to the destination.
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Of course, it is reasonable to argue that platforms can infer the likelihood of destinations given the

historical data they have, which creates an association between origins and destinations. We rely

on the many location and time fixed effects to help alleviate this concern.

A similar endogeneity issue applies to WTsjt, and in the same spirit, we adopt an IV strategy by

exploiting the total number of drop-offs at all neighboring zones of the focal zone. This essentially

measures the stock and availability of cars close to the focal zone, which affects the wait time at

the focal zone, but at the same time is not likely to be influenced by focal zone demand shocks.

The stochastic unobserved utility component ξ is assumed to be normally distributed with mean

zero and independent across both service types and jkt’s. The error term ξcjkt − ξsjkt in Equation

(3), however, creates within-jkt correlation among the observations, as these observations share

a common part ξcjkt in the error. Specifically, COV (ξcjkt − ξsjkt, ξcjkt − ξs′jkt) 6= 0 for two on-

demand service types s and s′ in the same jkt. Given that we use instrumental variables that

are not correlated with ξcjkt, a random effects estimator would be appropriate to deal with the

correlation in errors. One complication to the problem is that the analysis sample is unbalanced

— as illustrated in Section 4.1, there are varying number of observations within a given jkt due

to the sub-sampling filters applied (Dcjkt > 0 and Dsjkt ≥ 0.1). We choose to follow the general

method proposed in Balestra and Varadharajan-Krishnakumar [1987] to estimate Equation (3) by

Feasible Generalized Two-Stage Least Squares.

Denote esjkt = ξcjkt − ξsjkt, where the variances of ξcjkt and ξsjkt are σ2c and σ2s , respectively.

Let Sjkt be the set of ride-sharing service types available at a particular jkt; Tjk is the set of time

periods for a particular route jk; Kj is the set of destinations for a particular pick-up location j; J

is the set of all available pick-up locations. Further denote Csjkt as the number of unique sjkt’s and

Cjkt as the number of unique jkt’s, which are calculated by summing the cardinality the relevant

sets

Cjkt =
∑
J

∑
Kj

|Tjk| (6)

Csjkt =
∑
J

∑
Kj

∑
Tjk

|Sjkt| (7)

Then the estimator can be constructed by the following procedure:

Step 1: Estimate Equation (3) by a simple two-stage least squares regression without account-

ing for correlated errors, which leads to the composite residual êsjkt = ̂ξcjkt − ξsjkt.
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Step 2: Decompose the composite residual

ξ̂cjkt =
1

|Sjkt|
∑
Sjkt

êsjkt (8)

and

ξ̂sjkt = êsjkt − ξ̂cjkt (9)

Step 3: Compute the variance estimates σ̂2c and σ̂2s , using the decomposed residuals ξ̂cjkt and

ξ̂sjkt

σ̂2c =
1

Cjkt

∑
J

∑
Kj

∑
Tjk

(ξ̂cjkt −
1

Cjkt

∑
J

∑
Kj

∑
Tjk

ξ̂cjkt)
2 (10)

and

σ̂2s =
1

Csjkt

∑
J

∑
Kj

∑
Tjk

∑
Sjkt

(ξ̂sjkt −
1

Csjkt

∑
J

∑
Kj

∑
Tjk

∑
Sjkt

ξ̂sjkt)
2 (11)

Step 4: Construct a Csjkt × Csjkt block diagonal matrix with Cjkt number of blocks

Ω̂−
1
2 =


. . . O O

O
[
Q̂jkt

]
|Sjkt|×|Sjkt|

O

O O
. . .


Csjkt×Csjkt

(12)

where each block element (
[
Q̂jkt

]
|Sjkt|×|Sjkt|

) is a square matrix with diagonal elements equal to

1
|Sjkt|(

1

(|Sjkt|σ̂2
c+σ̂

2
s)

1
2
− 1−|Sjkt|

σ̂s
) and off-diagonal elements equal to 1

|Sjkt|(
1

(|Sjkt|σ̂2
c+σ̂

2
s)

1
2
− 1

σ̂s
) . O are

matrices of zeros.

Step 5: The random effects estimator can be constructed explicitly as

(α̂ β̂ Θ̂)′ = (X∗
′
Z∗(Z∗

′
Z∗)−1Z∗

′
X∗)−1X∗

′
Z∗(Z∗

′
Z∗)−1Z∗

′
D∗ (13)

where Z denotes the matrix that contains all the instruments, and
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X =


...

...
...

Psjkt − Pcjkt WTsjt −WTcjt (Xcjkt −Xsjkt)
′

...
...

...



D =


...

log(
Dcjkt

Dsjkt
)

...



X∗ = Ω̂−
1
2X

D∗ = Ω̂−
1
2D

Z∗ = Ω̂−
1
2Z

5 Estimation Results and Discussion

5.1 Estimation Results

We drop airport pick-ups from the sample because only very few trips end in neighboring zones

of airports, and the correlation between these trips and airport wait time is very weak to justify

the use of the wait time IV. To-airport trips, however, are kept in the sample. We then include

two dummy variables, “to-airport” and “rain”, in the vector Yjkt to allow consumers on trips to

the airport and trips in the rain, respectively, to have differential price and time sensitivities. The

vector of observed characteristics Xsjkt includes luxury and capacity. Luxury measures the units

of luxury service provided by the trip, which is a dummy variable on UberBlack and UberSUV,

multiplied by the duration of the jkt trip. Capacity is defined similarly, except for service types

UberXL, UberSUV, and LyftPlus. Finally, the set of fixed effects includes pick-up zone, drop-

off PUMA, pick-up hour by weekend (dummy), pick-up PUMA by time block, pick-up PUMA

by drop-off borough, and drop-off PUMA by time block. Table 8 summarizes the sample at the

pickupzone-dropoffpuma-month-day-hour-15min, or jkt, level.

The results are shown in Table 9. Across almost all location-time-block combinations, the price

effects on utility are estimated to be significantly negative (−αjkt) and marginal utility of time
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(βjkt) is estimated positive and strong, providing direct evidence that price-sensitive consumers

value their time and dislike waiting. If one constructs a variable by the ratio of βjkt and αjkt, the

median of the distribution (weighted by trip volume in each of those location-time cells) is $3, which

measures the monetary value a representative consumer attaches to one minute of waiting. This

result is sensible, primarily due to selection — consumers who ride taxis, ride-sharing platforms, or

both are a richer subset of the NYC population. In addition, how much consumers dislike waiting

also depends on the disutility of waiting, the opportunity cost of being late, and so on.

More interestingly, sensible heterogeneity is found in these estimates. For example, consumers

in Midtown Manhattan during morning rush hours tend to be more time-sensitive and less price-

sensitive, compared to consumers in most other location-times. This may reflect the preference

of relatively high-income workers who rush into their workplaces on weekday mornings. A very

similar pattern appears in Lower Manhattan during evening rush hours, which may be driven by

Wall Street workers. Also, consumers going to the airport value time more and are additionally

less sensitive to price. In addition, the coefficient estimates of luxury and capacity are strong,

indicating that NYC consumers value these features that are made conveniently available on the

platforms compared to the offline options.

5.2 Robustness Checks

As discussed in the previous section, the unique design feature of the ride-sharing applications helps

rationalize the use of our instrumental variable. It should be noted, however, that other endogeneity

channels may be present and cannot be eliminated by this design feature. Although we control for

many location and time fixed effects to alleviate the problem, it is nonetheless difficult to clear all

endogeneity problems.

One possible endogeneity threat is unobserved common demand and supply shocks that si-

multaneously affect origins and destinations, therefore creating a correlation between destination

demand shocks and origin prices. However, this identification threat is likely more relevant for

origins and destinations that are relatively close in space, time, or both. As a robustness check, we

calculated the average trip duration for all trips ending in the focal zone, and split the sample by

dropping observations with an average duration (of incoming trips) below the 25th percentile and

50th percentile. We found qualitatively similar results. With a similar argument, trips in Manhat-

tan are more subject to this identification threat because they are usually short trips. Hence, in

another robustness check, we only kept observations in the outer boroughs for the analysis and the
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results were reassuring as well.

5.3 Discussion

5.3.1 Demand Elasticities

Own-price and cross-price elasticities are generally key measures in demand studies to characterize

consumer preference. These measures are not derived in this paper, because of data unavailability

of market shares. However, the issue is less severe than it seems, because wait time, which affects

demand, is determined simultaneously with price. Any change in price will likely lead to a change

in wait time and have an extra effect on the mean conditional utility, through the effect of wait

time on utility. In particular, the price elasticity can be written as:

∂MarketShare(P,WT )

∂P
=
∂MarketShare(P,WT )

∂P WT=WT 0 +
∂MarketShare(P,WT )

∂WT

∂WT

∂P

Although the demand estimation produces estimates on consumers’ marginal utility of price

(∂MarketShare(P,WT )
∂P WT=WT 0) and marginal utility of wait time (∂MarketShare(P,WT )

∂WT ), the marginal

effect of price on wait time (∂WT
∂P ) is unknown. Notice that how wait time is affected by price is

not controlled by the platforms. Instead, it is an outcome of a matching process, where the price

change leads to real-time adjustments in supply and demand, which in turn affects the wait time.

The new change in wait time further causes a feedback effect on demand and price, which induces

yet another round of adjustments. Examining this complex feedback loop is beyond the scope of

this paper. A similar decomposition applies to the cross-price elasticities of demand.

5.3.2 Endogenous Choice Set

One implicit assumption for our demand estimation procedure is that individuals multi-home on

both Uber and Lyft platforms. In other words, we assume that consumers have complete informa-

tion on the choice set. This may not be perfectly realistic, because there are individuals who do

not yet adopt these ride-sharing platforms, and many who adopt them may not multi-home.

However, this problem might not be as severe as it seems given that our sample period is June

2016, by which Uber and Lyft had grown substantially. Based on TLC data, the number of unique

vehicles dispatched by Uber in NYC had doubled the number of taxis by June 2016, and Lyft
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was only slightly short of the taxi medallion number.26 A survey conducted by PEW Research

Center 27 at the end of 2015 reveals that more than 20% of urban Americans have used ride-hailing

applications, and over half of all Americans were familiar with these services although they had

never used them. The report also indicates that the adoption of ride-hailing applications is more

popular among young adults in urban areas who are more educated and relatively affluent. NYC

population fits the profile in the report to have high adoption and usage of ride-sharing platforms.

There is a strand of literature that focuses on the variable choice set in the demand estimation,

such as Bruno and Vilcassim [2008]. A complication with our setting is that the limited choice

set is due to consumers’ endogenous platform adoption decisions, rather than to exogenous reasons

such as store stock-outs. Therefore, the single-homing decisions also reflect some platform-specific

utility that cannot be captured by the current framework. Without consumer-level data, these

consumer multi-homing and selection issues require a heavy structure that is beyond the scope of

this paper.

5.3.3 Zero Sales Problem

Naturally, there are many jkt’s with zero taxi trips, zero ride-sharing trips, or both zero taxi

trips and zero ride-sharing trips, when jkt’s are defined as finely as 15-minute intervals (Table 1).

This is a frequent phenomenon across many markets of differentiated goods and services, and the

measurement errors in market shares can undermine the standard discrete choice demand models for

that these models always predict positive market shares (Gandhi et al. [2013], Quan and Williams

[2016]). Methodologies that mitigate this problem are limited and require certain assumptions on

the number of products, consumers, or both within a market. For example, the proposed solution of

Gandhi et al. [2013] uses a system of moment inequalities implied by demand shape restrictions, but

crucially relies on a large number of differentiated products. This, however, is a poor description

of the market for rides. Another way to alleviate the zero sales problem is to aggregate the data to

coarser jkt levels. But this practice would defeat the purpose of this study, which aims to estimate

the real-time demand. While recognizing the potential selection bias, we decide to drop all service

types with zero sales at jkt.

26See http://toddwschneider.com/posts/taxi-uber-lyft-usage-new-york-city/
27http://www.pewinternet.org/2016/05/19/on-demand-ride-hailing-apps/
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6 Taxi Market Equilibrium

Since the purpose of this paper is to study consumer welfare gain by a counterfactual with no

ride-sharing platforms, it is important to understand how taxis would respond in this situation. In

this section, we propose a model of taxi market equilibrium. The uniqueness of the taxi market,

well articulated in Orr [1969], is the difference between operating hours and passenger service units

supplied: taxi drivers’ costs depend on the hours of driving and searching for passengers, while

their revenues depend on the fare multiplied by the number of passenger service units supplied.

This is due to the nature of the taxi matching technology. Here, we modify the framework used in

Orr [1969] to fit our purpose. Let the taxi demand be specified as,

D = f(F a, q;M,ΘD)

where D is the number of passenger service units demanded; F a is the fixed administered fare; q

is the total operating hours of taxi drivers; M is the number of potential consumers; and ΘD is

a vector of demand parameters. Also, D is continuous in F a and ∂D
∂Fa < 0; D is continuous in q,

and ∂D
∂q > 0, because as more taxi hours are provided, consumers are more quickly matched to

drivers and the average consumer wait time decreases; and D(q = 0, F a;M,ΘD) = 0, ∂D∂q q=0 >> 0,

∂2D
∂q∂q < 0, and ∂2D

∂q∂M > 0.

The taxi market is a market with a rather elastic supply of labor; only modest skills are required

to operate taxi cabs, and the practice of daily lease of medallions to the drivers imposes quite low

entry and exit costs.28 Cab drivers respond positively to wage increases by working longer hours

(Chen and Sheldon [2016], Farber [2015], Hall et al. [2017]). Under competitive conditions, the

market equilibrium is characterized as a steady state where marginal cost and average revenue are

equalized:
F a ∗D(F a, q;M,ΘD)

q
= MC(q) (14)

where MC(q) is the marginal cost of operating a taxi, MC(q) > 0, MC(q) << ∞, ∂MC
∂q ≥ 0,

and ∂2MC
∂q∂q ≥ 0. The fixed medallions impose a hard constraint on the number of operating hours

available in the market, that is, the maximal amount of daily operating hours is the number of

medallions multiplied by 24 hours. Let this maximum be q̄. Then the algebra leads to that the

28Farber [2015] documents “a fair amount of entry, exit, and reentry among taxi drivers”. Hall et al. [2017]
demonstrate the horizontal labor supply curve for Uber drivers, which may as well be the case for cab drivers.
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equilibrium operating hours supplied is concave in D up till q̄. 29

Let wait time for taxi riders be defined as,

WT = f(q,D; ΘWT )

where WT is a continuous function, twice differentiable in q and D, with parameters denoted by

the vector ΘWT . Particularly, ∂WT
∂q < 0 and ∂2WT

∂q∂q > 0: holding other things constant, more taxi

service supplied leads to less wait time for consumers, yet this decrease in wait time diminishes

as service units increase. ∂WT
∂D > 0 and ∂2WT

∂D∂D > 0: holding other things constant, more trips

demanded lead to longer consumer wait time, and this increase in wait time is greater as more trips

are demanded.

A graphical characterization of the taxi market equilibrium is presented in Figure 5a, where the

equilibrium path is the combination of the part of q∗ before q̄ and the part of vertical line above

q∗ (the curve in red). An immediate implication on the equilibrium service units and equilibrium

taxi wait time is depicted qualitatively in Figure 5b — wait time increases as equilibrium service

units increase after the capacity constraint. This is because supply cannot further adjust after the

capacity constraint. Therefore, ∂WT
∂D∗ = ∂WT

∂q∗
∂q∗
∂D∗ + ∂WT

∂D = 0 + ∂WT
∂D > 0.30 The intuition is simple:

as demand increases and maximal taxi capacity is reached, more and more consumers compete with

each other to get matched to a fixed number of operating taxi cabs, which leads to longer average

consumer wait time.31

One direct way to test the model prediction is to do a scatter plot of taxi pick-ups with taxi

wait time, and check whether the empirical pattern resembles Figure 5b. Unfortunately, in this

study we do not observe, estimate, or simulate the actual taxi wait time. However, Frechette et al.

[2016] are able to simulate taxi wait time from observed taxi cabs, taxi search time, and exogenous

time-varying factors, combined with a simulated matching function (Figure 6 of their paper). We

contrast their wait time estimates with UberTaxi wait time from our API queries in Figure 6, and

29Differentiating both sides of Equation 14 with respect to D leads to ∂q
∂D

= Fa

MC(q)+ ∂MC
∂q

q
> 0. Then ∂2q

∂D∂D
=

−Fa ∂q
∂D

[2MC′(q)+MC′′(q)q]

[MC(q)+ ∂MC
∂q

q]2
< 0.

30Before the capacity constraint q̄, the term ∂WT
∂q∗

∂q∗
∂D∗ is negative, so the sign of ∂WT

∂D∗ is undetermined. We use a flat
line in Figure 5b to describe the relationship between q and D before q̄, but it should be noted that this relationship
can be either positive, zero, or negative.

31Note that the market equilibrium proposed here abstracts away from the spatial equilibrium models such as
Lagos [2000], Lagos [2003], and Buchholz [2015]. It is possible that when there is an exogenous shock of demand,
taxi cabs relocate spatially and form a new spatial equilibrium, which results in a different average wait time than
implied by our model.
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Figure 5: Taxi Market Clearing

(a) Taxi Market Equilibrium (b) Model Prediction of Equilibrium Service Units
and Wait Time

Figure 6: UberTaxi Wait Time and Taxi Wait Time from Frechette et al. [2016]

find that UberTaxi wait time follows a similar trend as their estimates across hours of day, although

UberTaxi wait time is less volatile. We believe that UberTaxi is a reasonable proxy for taxi wait

time and use it in the test of the taxi market equilibrium.

The data strongly support the model prediction, as shown in Figure 7b. Overall, there is

a positive correlation between taxi trips and wait time. In particular, the average wait time is

relatively low below some trip quantity threshold but becomes much higher after the threshold with

a greater variation. In addition, there is a sharp contrast between rush hours and non-rush hours:

first, rush hour wait time is on average higher; and second, the correlation between trip volume and

wait time after the threshold at 10,000 trips, is greater during rush hours (correlation coefficient

is 0.42) than non-rush hours (correlation coefficient is 0.19). This is likely due to the certain
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Figure 7: Taxi Trips and Taxi Wait Time

(a) Model Prediction of Equilibrium Service Units
and Wait Time

(b) Hourly Taxi Wait time and Taxi Trips in Man-
hattan Core, Weekdays

spatial distribution of commuting routes during rush hours, which exacerbates the within-location

imbalance of demand and supply. We leverage these empirical correlations in the counterfactual

analysis.

7 Consumer Welfare Calculation

To evaluate the consumer surplus of the ride-sharing platforms, we follow the concept of compen-

sating variation. In other words, how much should consumers be compensated if Uber and Lyft

were to be removed from the market such that the consumers can maintain the same level of utility?

In the counterfactual, we assume that taxi and subway 32 are the only viable options. We further

assume that the subway remains the same operation, without capacity constraint when more riders

substitute toward it. For taxis, we consider two sensible counterfactual strategies.

7.1 Benchmark Counterfactual

In the first counterfactual analysis, the taxi system remainswith the current fixed number of medal-

lions and administered fares. There are two major reasons why consumers would be made worse off

in the absence of ride-sharing services: first, existing ride-sharing users would lose all the amenities

from ride-sharing services which they value more than other alternatives, due to revealed preference

(that is, they would not have used ride-sharing services had these services not provided the users

32The outside option — the public transit — should include buses as well. But due to data limitation on route-
specific bus travel time, we focus only on the subway system in the counterfactual study.
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with the highest utility); second, as shown in Section 6, when more consumers willingly substitute

toward taxis, the equilibrium average wait time increases, which makes existing taxi users worse

off.

To feasibly calculate the compensating variation and disentangle the various welfare mecha-

nisms, we compute the mean conditional utility of taxi and subway at jkt to predict how consumers

would substitute in the absence of ride-sharing services. In this exercise, we use the taxi wait time

estimates of Frechette et al. [2016] as the counterfactual taxi wait time. One key component miss-

ing from the demand estimation is φjkt, the utility difference between all car service types and the

subway. Recall the demand function:

Usijkt = −αjktPsjkt + βjkt(ToTojkt −WTsjt − TTjkt) +X ′sjktΘ + ξsjkt + φjkt + εsijkt

where φjkt did not pose a problem in the demand estimation, since it is common across all service

types except the outside option and thus differenced out in the estimation. The term φjkt is the

product of the constant per-unit utility φ and jkt-specific duration. Without any knowledge of φ,

we cannot appropriately assign consumers into taxis and subway in the counterfactual. However,

we have estimated the utility of luxury in the demand and can use it as a reference, because a

consumer’s utility of sitting in a car and not having to walk to a subway station can be proportional

to the utility of sitting in a luxury car. In fact, φ can be multiples of luxury utility due to diminishing

marginal utility of sitting — being able to sit means more utility than sitting comfortably. We

further allow for rush hours to differ from non-rush hours to account for the extra disutility of

riding the subway during rush hours, and this unknown constant multiple is denoted as φr.

In the search for φ and φr, we rely on the fact that once Uber and Lyft are removed from

the market, the number of taxi trips will increase because of sheer substitution. That is, the

values of φ and φr must be such that the corresponding counterfactual taxi ridership is greater

than or equal to the current ridership. It is important to note that using this boundary equality

(counterfactual ridership is equal to current ridership) leads to conservative estimates of φ and φr,

given the monotonic relationship between these values and consumers’ preference for taxis, which

then leads to a conservative estimate of taxi wait time change and a lower bound for the welfare

estimate.

After we get the lower-bound estimates for φ and φr that satisfy the above-mentioned criterion,

we can calculate the welfare. One key problem is then to compute the taxi wait time in the current
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world with ride-sharing platforms, which is neither observed nor estimated in the demand. This

is where we use the empirical relation between UberTaxi wait time and taxi trips in Figure 7 (b).

Specifically, we perform an OLS regression on the following model separately for rush hours and

non-rush hours, on day-hours when taxi trips exceed the capacity threshold 10,000:

Taxi wait time = π0 + π1Taxi trips (1,000s) (15)

where π1 is estimated at 0.155 for rush hours (N=233, t=7.09), and at 0.057 for non-rush hours

(N=559, t = 4.51). The estimated coefficients, counterfactual wait time, counterfactual taxi trips,

and current taxi trips help us compute the current taxi wait time. For example, for rush hours,

current wait time = 0.155*(current taxi trips - counterfactual taxi trips) + counterfactual wait time

(16)

With the inferred taxi wait time, we compute the current utility of taxi riders and their coun-

terfactual utility of riding taxis, conditional on that they still choose taxis in the counterfactual.

This gives us the competition effect for that it measures how consumers are made better off by the

entry of ride-sharing platforms, which reduces the wait time of taxi riders. At the same time, we

also compute the utility difference of current ride-sharing users by comparing their current options

with counterfactual best options. We further break down the total surplus into distinct amenities

in the demand and show the relative contribution of these amenities.

Column 1 of Table 10 summarizes the benchmark counterfactual results: the consumer surplus

per dollar spent on these ride-sharing services is about 72 cents, or $14 for an average trip. We

further break these welfare measures into distinct welfare channels, namely price, time, luxury, and

capacity, and we find the vast majority of the consumer surplus comes from better accessibility

(shortened wait time), compared to taxis and the subway. Another important welfare source is the

convenient availability of luxury cars that are valued in NYC. A very thin share of the consumer

welfare increase comes from price, yet this is not surprising since in NYC, Uber and Lyft prices

overall compare to taxi prices at the base-price level. As a sizable supplement to the public transit,

Uber and Lyft provide car services that increase consumer surplus with more comfortable seating

and traveling (13% of total consumer surplus). We further compare the per-dollar welfare across

service types, pick-up boroughs, and rush and non-rush hours, and find a good deal of heterogeneity

across these splits. In particular, the per-dollar consumer surplus is higher in the outer boroughs

than in Manhattan, which is expected given that alternative options are more conveniently available
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in Manhattan. Likewise, Uber and Lyft generate proportionally more welfare gain during rush hours

than during non-rush hours, primarily due to the high utilization and poor performance of taxis

and subway in rush hours. Finally, taxi riders gain 16 cents per dollar spent, because taxi wait

time becomes shorter as a result of consumer substitution toward ride-sharing platforms. Similar

benefits to users of incumbent goods or services due to lower prices (as a result of competition) are

documented in the literature, such as consumers of automobiles (Petrin [2002]), cable TV (Goolsbee

and Petrin [2004]), and hotels (Farronato and Fradkin [2017]), except that here the benefit comes

from shorter queuing time.

7.2 Application-based Taxis

What factors account for the substantial welfare improvement seen in the benchmark counterfac-

tual? A commonly held view is that ride-sharing platforms are merely taxis with an app, meaning

that the main (if not only) differentiator is the matching technology used. Many others instead

consider dynamic pricing as the driving force of the economic value. In this section, we make an

attempt to evaluate the relative importance of these two mechanisms by studying a counterfactual

where taxis adopt the same (or similar) app-based matching technology.33 The rationale is that the

additional consumer surplus due to entry of ride-sharing platforms, when the matching technology

is already in place, would largely reflect the value of dynamic pricing.

In this counterfactual, the medallion system remains capped and cab fares are fixed at the

current rate. The app essentially dispatches a cab to any rider requesting a ride on a first-come-

first-serve basis. We are well-equipped to study this counterfactual since we have wait time data of

UberTaxi, which the counterfactual taxis greatly resemble. Therefore, we proxy the counterfactual

taxi wait time by UberTaxi wait time, avoiding the heavy structure that requires modeling the

optimal dispatching process and the resulting wait time. Although UberTaxi offers a great deal of

valuable convenience, it should be noted that the true counterfactual taxi wait time depends on the

extent of app adoptions by both drivers and riders, which can be rather different than UberTaxi

adoptions.

We follow roughly the same procedure as laid out in the benchmark counterfactual and present

the results in Column 2 of Table 10. Compared with the benchmark case, consumer surplus of

Uber and Lyft is generally less when taxis adopt the application-based matching, around 46 cents

33In fact, NYC TLC has partnered with private enterprises to launch the smartphone application Arro, which
matches cab drivers with riders at no additional cost.
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per dollar. To the extent that the unique nature of ride-sharing platforms is the application-

based matching combined with dynamic pricing, this counterfactual result helps us learn the value

added of dynamic pricing, which takes a significant share of the total benchmark consumer surplus.

More interestingly, we compare the per-dollar welfare gain across NYC boroughs and find that

this measure is greater in Manhattan ($0.51) than in outer boroughs ($0.12- $0.34). This further

speaks to the benefit of dynamic pricing, which is likely more welfare-enhancing in thick markets

with volatile demand and supply that need to be efficiently matched. In other words, the dispatching

technology benefits the outer boroughs more than it benefits Manhattan.

This is consistent with the theoretical work of Castillo et al. [2017], who argue that surge pricing

is critical to ride-hailing apps in efficient allocation of capacity, essentially preventing the system

from reaching a catastrophic “wild goose chase” equilibrium when demand is high. In their model,

surge pricing solves the problem by reducing the demand with a high price and keeping driver

earnings sufficiently high. Our data provide supporting evidence: high surge predicts shorter

subsequent wait time and more subsequent matches of drivers and riders.

8 Conclusion

The rise of ride-sharing platforms has promoted heated debates on many issues, and this calls for

thorough evaluations of the market to guide policy decisions. Focusing on the consumer side, this

paper finds strong support for the consumer welfare gain of these ride-sharing platforms. The vast

majority of the surplus is due to shortened wait time, which is likely a result of the better matching

technology and the practice of dynamic pricing.

Ride-sharing platforms are not simply taxis with an app. These welfare gains are unique to the

tech-aided platforms to the extent that the highly regulated taxi system cannot implement dynamic

pricing. We show evidence that the most important margin lies in the complementarity between

the technology and dynamic pricing, which has likely contributed to the success of these platforms.

While in this paper we only used data from NYC, the welfare estimates can help infer the

economic impacts of ride-sharing platforms in other cities and regions as well. This is because

NYC is not just Manhattan — it consists of many neighborhoods that vary in demographics as

well as transportation accessibility. This variation can help relate NYC neighborhoods to a wide

range of US cities with similar configurations. However, it should be noted that our results in

general imply a lower bound of welfare gain, given that NYC taxis and public transit are among
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the nation’s best.
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Table 5: Uber and Lyft Dynamic Pricing and Wait Time

Variable Mean Std. Dev. Min Max N

Surge Frequency

UberX 0.073 0.260 0 1 32398537
UberXL 0.072 0.259 0 1 32398537
UberBlack 0.012 0.112 0 1 32359662
UberSUV 0.013 0.114 0 1 32421149
UberPool 0.080 0.272 0 1 32359652
Lyft 0.180 0.384 0 1 31257800
LyftLine 0.180 0.384 0 1 31257800
LyftPlus 0.180 0.384 0 1 31257800
Surge Multiple

UberX 1.037 0.1622 1 4.2 32398537
UberXL 1.037 0.1619 1 4.2 32398537
UberBlack 1.008 0.0856 1 2.9 32359662
UberSUV 1.008 0.0884 1 2.9 32421149
UberPool 1.022 0.1028 1 3.4 32359652
Lyft 1.100 0.2727 1 5.0 31257800
LyftLine 1.100 0.2727 1 5.0 31257800
LyftPlus 1.100 0.2727 1 5.0 31257800
Wait Time (minutes)

UberX 6.949 8.912 1 45 32421149
UberXL 13.509 14.794 1 45 32421149
UberBlack 8.821 10.176 1 45 32421149
UberSUV 14.059 15.324 1 45 32421149
UberPool 7.496 9.870 1 45 32421149
Lyft 7.034 9.882 1 45 33133051
LyftLine 6.884 9.869 1 45 33133051
LyftPlus 9.510 9.993 1 45 33133051

Note: The data for this table come from Uber and Lyft API queries, June-August 2016,
where both price and wait time of 263 NYC zones are queried in approximately one-minute
intervals. The small variation in variable sizes reflects rare cases of missing values and/or
duplicated queries. There is no variation in surge frequency or surge multiples across ser-
vice types within Lyft platform.
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Table 6: NYC Taxi Trips Records

Variable Mean Std. Dev. Min Max N

Trip duration (minutes)† 14.378 11.436 1 180 47483432
Trip distance (miles) 2.985 3.515 0.01 199 47483432
Base fare 12.858 10.039 0 314 47483432
Extra fee 0.337 0.435 0 21.5 47483432
MTA tax 0.498 0.023 0 2.34 47483432
Tip 1.685 2.267 0 300 47483432
Tolls 0.270 1.249 0 111.65 47483432
Improvement fee 0.299 0.011 0 0.6 47483432
Total fare 15.955 12.293 2.54 360.34 47483432
Passenger count 1.631 1.283 0 9 47483432
Yellow taxi 0.887 0.315 0 1 47483432
Manhattan pickup 0.850 0.356 0 1 47483432
Queens pickup 0.084 0.277 0 1 47483432
Bronx pickup 0.005 0.074 0 1 47483432
Brooklyn pickup 0.060 0.237 0 1 47483432
Staten Island pickup 0.000 0.006 0 1 47483432
Manhattan dropoff 0.827 0.377 0 1 47483432
Queens dropoff 0.076 0.266 0 1 47483432
Bronx dropoff 0.012 0.110 0 1 47483432
Brooklyn dropoff 0.082 0.275 0 1 47483432
Staten Island dropoff 0.000 0.014 0 1 47483432

Note: Trip duration is calculated as the difference between the pick-up time and the drop-
off time. Unreasonable trips from the raw data are dropped using the following filters: trips
with any negative cost components (cost components include base fare, extra fee, MTA tax,
tip, tolls, improvement fee), trips with negative distance, trips with negative duration, trips
greater than 200 miles, trips longer than 180 minutes. In total, less than 0.5% of the raw
sample are dropped by these filters.
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Table 7: Uber and Lyft Trips Records from Field Collection

Variable Mean Std. Dev. Min Max N

Trip duration (minutes) 17.847 9.625 2.817 107.316 75704
Trip distance (miles) 4.177 3.846 0.2 29.5 75704
Total fare ($) 21.479 15.336 3 209.8 75704
Manhattan pickup 0.766 0.423 0 1 75704
Queens pickup 0.118 0.323 0 1 75704
Bronx pickup 0.011 0.108 0 1 75704
Brooklyn pickup 0.102 0.303 0 1 75704
Manhattan dropoff 0.718 0.449 0 1 75704
Queens dropoff 0.115 0.319 0 1 75704
Bronx dropoff 0.025 0.157 0 1 75704
Brooklyn dropoff 0.140 0.347 0 1 75704
UberX 0.577 0.493 0 1 75704
UberXL 0.002 0.046 0 1 75704
UberBlack 0.157 0.364 0 1 75704
UberSUV 0.045 0.208 0 1 75704
UberPool 0.100 0.300 0 1 75704
Lyft 0.104 0.306 0 1 75704
LyftLine 0.011 0.106 0 1 75704
LyftPlus 0.001 0.033 0 1 75704

Note: This table summarizes the field data collection of 75,704 historical trip records from
443 Uber/Lyft drivers in NYC. We discuss the sampling methods and randomness of the
data in the data appendix A.3.
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Table 8: Description of the Sample

Variable Mean Std. Dev. Min Max N

Pickup Count

Taxi 4.835 8.800 1 410 6288102
UberX 0.906 1.078 0 24.345 6281657
UberXL 0.003 0.009 0 0.228 6280716
UberBlack 0.316 0.697 0 19.351 6280041
UberSUV 0.086 0.139 0 3.51 6262633
UberPool 0.184 0.264 0 5.84 6182534
Lyft 0.207 0.344 0 10.079 5893070
LyftLine 0.026 0.044 0 1.137 5876900
LyftPlus 0.003 0.009 0 2.483 5887722
Price per Service Minute ($)

Taxi 1.153 0.117 0.695 5.199 6288102
UberX 1.111 0.286 0.538 5.75 6281657
UberXL 1.683 0.431 0.792 8.731 6280716
UberBlack 2.195 0.445 1.128 10 6280041
UberSUV 3.071 0.674 1.527 16.667 6262633
UberPool 0.964 0.257 0.124 5.833 6182534
Lyft 1.222 0.373 0.391 6.678 5893070
LyftLine 1.108 0.452 0.198 7.655 5876900
LyftPlus 1.864 0.567 0.588 10.296 5887722
Wait Time (minutes)

UberX 4.012 2.671 1 30 6281657
UberXL 7.827 6.518 1 30 6280716
UberBlack 4.398 2.898 1 30 6280041
UberSUV 7.478 8.118 1 30 6262633
UberPool 4.338 3.277 1 30 6182534
Lyft 3.102 1.777 1 30 5893070
LyftLine 2.969 1.681 1 30 5876900
LyftPlus 4.582 2.376 1 30 5887722
UberTaxi 4.946 2.715 1 19.698 6288102
Route Characteristics (dummies)

Rain 0.044 0.205 0 1 6288102
From airport 0.058 0.233 0 1 6288102
To airport 0.072 0.259 0 1 6288102
Morning rush 0.085 0.279 0 1 6288102
Evening rush 0.133 0.34 0 1 6288102
Weekday night 0.127 0.333 0 1 6288102
Weekday late night 0.158 0.365 0 1 6288102
Weekday day time 0.174 0.38 0 1 6288102
Weekend late night 0.066 0.249 0 1 6288102
Weekend day time 0.137 0.344 0 1 6288102
Friday and weekend night 0.119 0.324 0 1 6288102
Manhattan core 0.588 0.492 0 1 6288102

Lower Manhattan(LM)4 0.180 0.384 0 1 6288102

Midtown4 0.264 0.441 0 1 6288102

Uppereast and Upperwest(UE&UW)4 0.144 0.351 0 1 6288102
Non Manhattan core(NMC) 0.412 0.492 0 1 6288102

Note: This table provides a description of the sample at the pickupzone-dropoffpuma-month-
day-hour-15min (jkt) level. The sample size 6,288,102 represents the number of jkt’s, each of
which has at least one taxi pickup. The variations in N is due to missing data of ride-sharing
services in certain jkt’s. The time blocks are defined as: morning rush (weekdays 7am-9am),
evening rush (weekdays 4pm-7pm), weekday daytime (weekdays 10am-3pm), weekday night
(weekdays 8pm-11pm), weekday late night (weekdays0am-6am), weekend day time (weekends
5am-5pm), weekend night (Friday 8pm-11pm and weekends6pm-11pm), and weekend late night
(weekends 0am-4am).
4Manhattan core is divided into 3 areas: Lower Manhattan, Midtown, Uppereast and Upper-
west.
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Table 9: Heterogeneous Consumer Taste

Price/Time LM Midtown UE & UW NMC
Morning rush α 0.199*** 0.058* 0.136*** 0.242***

(0.044) (0.031) (0.016) (0.023)
β 0.554*** 0.655*** 0.479*** 0.501***

(0.091) (0.090) (0.046) (0.080)
Evening rush α 0.026** 0.094*** 0.127*** 0.099***

(0.012) (0.016) (0.013) (0.020)
β 0.807*** 0.676*** 0.487*** 0.644***

(0.053) (0.038) (0.042) (0.083)
Weekday night α 0.124*** 0.168*** 0.335*** 0.233***

(0.011) (0.018) (0.041) (0.016)
β 0.570*** 0.512*** -0.173 0.320***

(0.037) (0.031) (0.127) (0.077)
Weekday late night α 0.170*** 0.149*** 0.457*** 0.094***

(0.019) (0.015) (0.141) (0.021)
β 0.421*** 0.447*** -0.642 0.840***

(0.067) (0.050) (0.544) (0.095)
Weekday day time α 0.113*** 0.062*** 0.266*** 0.210***

(0.012) (0.012) (0.018) (0.014)
β 0.663*** 0.830*** 0.102 0.561***

(0.058) (0.064) (0.074) (0.117)
Weekend night α 0.209*** 0.274*** 0.294*** 0.210***

(0.019) (0.025) (0.022) (0.009)
β 0.272*** 0.115** -0.014 0.471***

(0.046) (0.054) (0.057) (0.046)
Weekend late night α 0.180*** 0.137*** 0.383*** 0.237***

(0.011) (0.014) (0.043) (0.010)
β 0.587*** 0.551*** -0.484*** 0.519***

(0.044) (0.032) (0.152) (0.059)
Weekend day time α 0.173*** 0.135*** 0.176*** 0.222***

(0.018) (0.014) (0.013) (0.015)
β 0.442*** 0.533*** 0.458*** 0.512***

(0.054) (0.056) (0.071) (0.069)

Airport α -0.080***
(0.013)

β 0.668***
(0.128)

Rain β 0.474***
(0.027)

Luxury (per service minute) -0.104***
(0.009)

Capacity (per service minute) -0.110***
(0.010)

N 14,464,715

Note: This table presents the demand estimation results. Throughout the table, α indicates a row of price
sensitivity estimates and β indicates a row of time sensitivity estimates. “Airport” is a dummy for to-
airport trips. The time blocks are defined as: morning rush (weekdays 7am-9am), evening rush (weekdays
4pm-7pm), weekday daytime (weekdays 10am-3pm), weekday night (weekdays 8pm-11pm), weekday late
night (weekdays0am-6am), weekend day time (weekends 5am-5pm), weekend night (Friday 8pm-11pm and
weekends6pm-11pm), and weekend late night (weekends 0am-4am).
Standard errors are in parentheses. * represents statistical significance at 10% level, ** 5%, and *** 1%.
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Table 10: Conterfactual Consumer Surplus Due to Entry of
Ride-sharing (RS) Platforms (Unit: Dollar)

Benchmark Taxi App

Consumer Surplus of RS Users

Per dollar spent on RS platforms 0.72 0.46
Per RS trip 14.05 8.86
Per RS service minute 0.92 0.58

RS Welfare Channels
Time 56.4% 44.7%
Price 8.3% 12.4%
Luxury 18.8% 26.5%
Capacity 3.5% 4.9%
Comfort 13.0% 11.4%

Per-dollar Consumer Surplus

of RS users: Heterogeneity

UberX 0.88 0.48
UberXL 0.08 0.00
UberBlack 0.60 0.49
UberSUV 0.48 0.40
UberPool 0.20 0.03
Lyft 0.99 0.61
LyftLine 0.35 0.05
LyftPlus 0.61 0.08
Manhattan pick-up 0.64 0.51
Queens pick-up 1.44 0.20
Bronx pick-up 1.14 0.34
Brooklyn pick-up 1.16 0.12
Rush hours (morning rush and evening rush) 1.59 0.99
Non rush hours 0.37 0.24

Consumer Surplus of Taxi Users

Per dollar spent on taxis 0.16 NA

Note: This table presents the counterfactual consumer surplus calculations. “Benchmark”
stands for the benchmark counterfactual, and “Taxi App” stands for the second counterfac-
tual in the paper where taxis adopt the same matching technology as ride-sharing platforms.
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A Data Appendix

A.1 Calculation of Trip Cost Psjkt

As mentioned in the main text, surge multiples and wait time are queried for all 263 zones ap-

proximately every minute, for all ride-sharing service types. Due to API query limit, we cannot

query data on trip distance, duration, and cost for all 263x263 routes at 1-minute level. Instead, we

query these variables for a route that begins in a given pick-up zone and ends in a randomly-chosen

drop-off zone in a given minute. Due to this random assignment, any given route is expected to be

queried approximately every 4 hours (4 hours*60 minutes per hour = 240 minutes). In particular,

the 4-hour periods for a typical day are midnight - 4.00 a.m., 4:00 a.m. - 8:00 a.m., 8:00 a.m. -

12:00 p.m., 12:00 p.m. - 4:00 p.m., 4:00 p.m. - 8:00 p.m., 8:00 p.m. - midnight. We then use the

trip distance and duration estimate in the 4-hour interval to proxy the minute-level trip distance

and duration, for the same route.

The inputs for calculating Psjkt, the type-route-minute level trip cost, now include surge multiple

at sjkt, as well as trip distance and duration at sjkt (proxied by the random draw in the 4-

hour window). The only missing ingredient is how trip distance and duration map into the base

price. One alternative method is a direct application of pricing formulas published by Uber and

Lyft. However, trip-specific fees of various sorts are not observed by us, which likely causes a

downward bias in trip cost estimate. We instead exploit the empirical relationship between trip

distance/duration and trip cost by estimating the following equation separately for each service

type:

Trip Costjkt̃
Surge Multiplejt̃

= ωs0 + ωs1Trip Distancejkt̃ + ωs2Trip Durationjkt̃ + ε (17)

where t̃ denotes the particular minute when information of the route jk is queried. Base price is

calculated by dividing trip cost estimate at jkt̃ by the surge multiple at jkt̃. These parameter

estimates (ω̂s0, ω̂s1, ω̂s2) then constitute an empirical mapping from trip distance and duration to

trip cost Psjkt, which is given by:

Psjkt = Surge Multiplesjt(ω̂
s
0 + ω̂s1Trip Distancesjkt̃ + ω̂s2Trip Durationsjkt̃) (18)
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A.2 Identifying Uber and Lyft Trips from TLC FHV Trip Records Data

The FHV trip data does not specifically indicate the company name of each trip, instead it shows

the trip’s dispatching base number. Using the official TLC list of FHV bases 34, we are able to

identify Uber and Lyft trips by the correspondence between base numbers and company names.

Specifically, the base numbers associated with Uber are B02512, B02395, B02617, B02682, B02764,

B02765, B02835, B02836, B02864, B02865, B02866, B02867, B02869, B02870, B02871, B02872,

B02875, B02876, B02877, B02878, B02879, B02880, B02882, B02883, B02884, B02887, B02888,

and B02889. The base numbers associated with Lyft are B02510 and B02844.

A.3 Field Collection of Uber and Lyft Trip Records

We conducted two rounds of field surveys of Uber and Lyft drivers. The first round took place in

January 2017 and the second route took place in March 2017. In both rounds, we requested for

drivers’ historical trip records from June to August 2016 so that all of our data sources are from

the same time period.

We employed two sampling strategies in the data collection: a random sample and a convenience

sample. In the collection of the random sample, the research team split into 4 groups, where

two groups started around 9am at 2 locations in Manhattan, and the other two groups started

at 2 locations in Brooklyn. Each group requested a trip to a randomly-selected borough out

of Manhattan, Bronx, Brooklyn, and Queens. Upon arrival and before the driver answered a

subsequent trip, the group made request to the driver for voluntary data disclosure. If the request

was declined, they then offered a small sum of money in exchange for the data. The group collected

as many trips as possible when the driver willingly accepted the request, either voluntarily or with

a small sum of money, and the group chose to walk away when the monetary offer was rejected.

The group repeated the same process throughout the day untill 9pm. In total, the research team

collected 10,333 trips from 56 drivers out of 76 attempted.

For the convenience sample, we approached Uber and Lyft drivers at places where they either

were taking a break and/or were between trips. These places include restaurants, coffee shops,

street corners, and parking lots. We followed the same data request procedure as for the random

sample. Because we had more time interacting with drivers and recording data this way, the

convenience sample is multiple times as large as the random sample. Table A1 compares these two

34See http://www.nyc.gov/html/tlc/downloads/pdf/find_a_ride.pdf
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samples on various margins and demonstrates that the convenience sample is highly in line with

the random sample.

The number of trips collected from a given driver varies greatly across drivers. As shown in

Figure A1, a large share of trip records came from a small number of drivers while many drivers

only gave a few trip records. Several factors may have contributed to this right-skewed distribution,

such as the sampling approach, heterogeneous driver tastes of privacy, driver tenure, etc. To check

on selection, we split the sample into trips collected from large drivers (≥ 300 trips) and trips

collected from small drivers (< 300 trips), and then compare these subsamples with the random

sample. Table A1 shows that these subsamples are overall consistent with the random sample and

selection on driver size (in terms of trips collected) appears to be insignificant.

Figure A1: Trips Collected Vary across Drivers
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A.4 Inference of Dsjkt

Due to the data limitation of Uber and Lyft trips published by TLC, the finest level one can get

is DUber
jt and DLyft

jt , where DUber
jt measures the total trip counts of all 5 service types on Uber at

the pick-up location j in time t, and DLyft
jt is the total trip counts of all 3 service types on Lyft

at the pick-up location j in time t. To infer trip counts at a finer sjkt (type-pickup-dropoff-time)

level, we exploit the field-collected sample of 75,704 Uber and Lyft trip records using the following

procedure:

Step 1: Construct a vector of zeroes, whose length is s× j × k× t, i.e., at the type-month-day-

time-hour-15min level. Fill any sjkt cell with 1, if a trip is observed in that particular cell from
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Table A1: Comparison Between Various Sub-samples from Field Collection

Random Convenience Large Small
Sample Sample Drivers Drivers

N 10333 65371 37307 38397

Pick-up Location
LM 0.202 0.203 0.184 0.221

(0.401) (0.402) (0.387) (0.415)
Midtown 0.349 0.328 0.270 0.390

(0.477) (0.470) (0.444) (0.488)
UE&UW 0.168 0.165 0.171 0.160

(0.374) (0.371) (0.377) (0.367)
NMC 0.281 0.303 0.375 0.228

(0.450) (0.460) (0.484) (0.420)
Drop-off Location

LM 0.192 0.184 0.172 0.197
(0.394) (0.387) (0.377) (0.398)

Midtown 0.305 0.291 0.239 0.345
(0.46) (0.454) (0.426) (0.475)

UE&UW 0.169 0.160 0.162 0.162
(0.375) (0.367) (0.368) (0.368)

NMC 0.335 0.365 0.428 0.296
(0.472) (0.482) (0.495) (0.457)

Pick-up Time
Morning rush 0.123 0.096 0.086 0.113

(0.329) (0.295) (0.28) (0.317)
Evening rush 0.126 0.152 0.175 0.123

(0.332) (0.359) (0.38) (0.328)
Weekday night 0.119 0.151 0.172 0.122

(0.323) (0.358) (0.377) (0.327)
Weekday late night 0.093 0.131 0.064 0.186

(0.29) (0.338) (0.244) (0.389)
Weekday day time 0.268 0.180 0.190 0.193

(0.443) (0.384) (0.392) (0.395)
Weekend late night 0.042 0.057 0.029 0.08

(0.201) (0.232) (0.168) (0.271)
Weekend day time 0.141 0.117 0.137 0.105

(0.348) (0.321) (0.343) (0.306)
Weekend night 0.088 0.117 0.148 0.079

(0.283) (0.321) (0.355) (0.269)
Trip Distance

≤ 2 miles 0.338 0.336 0.262 0.409
(0.473) (0.472) (0.440) (0.492)

>2 miles and ≤5 miles 0.416 0.404 0.437 0.376
(0.493) (0.491) (0.496) (0.484)

>5 miles 0.246 0.259 0.301 0.215
(0.431) (0.438) (0.459) (0.411)

Trip Duration
≤ 10 minutes 0.162 0.168 0.108 0.226

(0.368) (0.374) (0.31) (0.418)
> 10 minutes and ≤ 20 minutes 0.550 0.541 0.535 0.549

(0.497) (0.498) (0.499) (0.498)
> 20 minutes 0.288 0.291 0.357 0.226

(0.453) (0.454) (0.479) (0.418)
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Table A1: Comparison Between Various Sub-samples from Field Collection (Continued)

Random Convenience Large Small
Sample Sample Drivers Drivers

N 10333 65371 37307 38397

Service Type
UberX 0.566 0.579 0.817 0.344

(0.496) (0.494) (0.386) (0.475)
UberXL 0.002 0.002 0.000 0.004

(0.047) (0.046) (0.014) (0.063)
UberBlack 0.170 0.155 0.029 0.282

(0.376) (0.362) (0.169) (0.45)
UberSUV 0.051 0.045 0.010 0.080

(0.219) (0.207) (0.098) (0.272)
UberPool 0.095 0.101 0.143 0.059

(0.293) (0.302) (0.35) (0.236)
Lyft 0.103 0.105 0.000 0.206

(0.304) (0.306) (0.019) (0.404)
LyftLine 0.012 0.011 0.000 0.023

(0.111) (0.106) (0.000) (0.148)
LyftPlus 0.001 0.001 0.000 0.002

(0.024) (0.035) (0.016) (0.045)
Pick-up Location x Drop-off Location

LM - LM 0.066 0.067 0.049 0.084
(0.249) (0.259) (0.216) (0.278)

LM - Midtown 0.078 0.072 0.067 0.08
(0.269) (0.259) (0.25) (0.271)

LM - UE&UW 0.021 0.029 0.022 0.018
(0.144) (0.139) (0.146) (0.132)

LM - NMC 0.036 0.044 0.046 0.040
(0.186) (0.204) (0.209) (0.195)

Midtown - LM 0.081 0.073 0.069 0.079
(0.272) (0.260) (0.253) (0.270)

Midtown - Midtown 0.131 0.126 0.075 0.177
(0.338) (0.332) (0.263) (0.382)

Midtown - UE&UW 0.065 0.060 0.053 0.067
(0.247) (0.237) (0.225) (0.25)

Midtown - NMC 0.072 0.070 0.073 0.066
(0.258) (0.254) (0.261) (0.249)

UE&UW - LM 0.019 0.020 0.024 0.016
(0.137) (0.140) (0.153) (0.124)

UE&UW - Midtown 0.060 0.055 0.053 0.058
(0.237) (0.227) (0.223) (0.234)

UE&UW - UE&UW 0.051 0.050 0.044 0.055
(0.219) (0.217) (0.205) (0.229)

UE&UW - NMC 0.038 0.041 0.051 0.031
(0.191) (0.198) (0.219) (0.173)

NMC - LM 0.025 0.024 0.03 0.018
(0.157) (0.152) (0.17) (0.133)

NMC - Midtown 0.035 0.037 0.044 0.030
(0.185) (0.189) (0.206) (0.17)

NMC - UE&UW 0.032 0.032 0.042 0.021
(0.175) (0.175) (0.202) (0.144)

NMC -NMC 0.189 0.211 0.258 0.159
(0.392) (0.408) (0.438) (0.366)
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the field-collected sample. 35 Then the vector contains 0’s and 1’s.

Step 2: Estimate a probit model of the vector in Step 1 to predict the probability of a trip in

sjkt by a number of location-time fixed effects:

Pr(1 trip in sjkt) =f(pickup zone, dropoff puma, service type, pickup hour,

pickup borough× pickup hour, pickup borough× dropoff puma,

pickup borough× service type, dropoff puma× service type)

Step 3: Calculate Dsjkt by distributing DUber
jt and DLyft

jt into service types and drop-off locations.

This requires constructing weights using the estimated psjkt in Step 2, and applying the following

formulas (Note that s = 1, 2, 3, 4, 5, for 5 service types on Uber, and s = 6, 7, 8, for 3 service

types on Lyft):

For Uber:

Dsjkt =
psjkt∑263

k=1

∑5
s=1 psjkt

DUber
jt

For Lyft:

Dsjkt =
psjkt∑263

k=1

∑8
s=6 psjkt

DLyft
jt

These weights ensure that the inferred Dsjkt’s return the value of DUber
jt and DLyft

jt , when summed

over service types and drop-off locations.

35In several rare cases we observe two trips within the same sjkt cell. In these cases, we randomly drop one of the
two trips.
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